Page 31 of 56

1 2	1	<u>Title</u>: INFLAMMATION, MUSCLE DAMAGE AND POST-RACE PHYSICAL
2 3 4	2	ACTIVITY FOLLOWING A MOUNTAIN ULTRAMARATHON
5 6	3	
7 8	4	Heading title: Determinants of ultramarathon recovery
9 10	5	
11 12 13	6	Martínez-Navarro Ignacio ^{1,2*} , Collado Eladio ³ , Hernando Carla ⁴ , Hernando Barbara ⁵ ,
15 14 15	7	Hernando Carlos ^{6,7}
15 16 17	8	
18 19	9	¹ Physical Education and Sports Department, University of Valencia, Valencia, Spain.
20 21	10	² Sports Health Unit, 9 de Octubre Hospital, Valencia, Spain
22 23	11	³ Faculty of Health Sciences, Jaume 1 University, Castellon, Spain
24 25	12	⁴ Department of Mathematics, Carlos III University of Madrid (Spain)
26 27 28	13	⁵ Department of Medicine, Jaume I University, Castellon, Spain
28 29 30	14	⁶ Sport Service, Jaume I University, Castellon, Spain.
31 32	15	⁷ Department of Education and Specific Didactics, Jaume I University, Castellon, Spain
33 34	16	
35 36	17	Correspondence to:
37 38 39	18	Ignacio Martínez-Navarro
39 40 41	19	Department of Physical Education and Sports
42 43	20	University of Valencia.
44 45	21	C/Gascó Oliag, 3 - 46010 - Valencia (Spain).
46 47	22	email: Ignacio.Martinez-Navarro@uv.es
48 49	23	phone number: +34 667331613
50 51		
52 53		
54 55		

24 Abstract

6 Background. The study aimed at exploring whether muscle membrane disruption, as a 8 surrogate for muscle damage, and inflammation recovery following a mountain ultramarathon (MUM) was related with race performance and post-race physical activity. Methods. Blood samples were obtained from thirty-four athletes (29 men and 5 women) before a /18-km MUM, immediately after and three and seven days post-race. Creatine kinase (CK) lactate dehydrogenase (LDH) and C-reactive protein (CRP) were compared between faster (FR) and slower (SR) runners. Physical activity performed during the week following the MUM was objectively analyzed using accelerometers and compared between FR and SR. Results. CK was significantly higher in FR at 3 days post-race $(p<0.0)^2$, d=1 and LDH was significantly higher in FR at 3 and 7 days post-race (p=0.005, d=1.01; p<0.015, d=1.05 respectively), as compared to SR. No significant differences were identified in post-race physical activity levels between FR and SR. Significant relationships were found between race time and CK and LDH concentrations at 3 days post-race ($r_s = 0.41$, p = 0.017; $r_s = -0.52$, p = 0.002 respectively) and 7 days post-race ($r_s = -0.36$, p = 0.039; $r_s = -0.46$, p = 0.007 respectively). However, post-race physical activity was not associated with muscle damage and inflammation recovery, except for light intensity and CRP at 3 days post-race (r_s =-0.40, p=0.025). Conclusions. Race time appeared to have a higher influence on muscle damage recovery than the intensity of physical activities performed in the week after running a MUM. Inflammatory activity takes longer to normalize than muscle damage following a MUM, it is not related with race time and lightly related with post-race physical activity.

Keywords: accelerometry, creatine kinase, lactate dehydrogenase, c-reactive protein, recovery

1. Introduction

The popularity of mountain ultramarathons (MUM) has grown exponentially during the last few years (1, 2), and a large number of studies has documented the acute physiological side effects of performing such exhaustive physical efforts (3). Indeed, a very pronounced increase in inflammation and muscle membrane disruption markers, as a surrogate for muscle damage, has been reported following MUMs (4, 5). The succession of prolonged eccentric actions that occur in the downhill sections of these races has been pointed as the main trigger of such inflammatory and muscle damage response (6, 7). For instance, while 1,350 U/l of circulating levels of creatine kinase (CK) were observed following a protocol of 2 sets of 50 bicep curls with 12 maximal eccentric contractions (8), CK concentrations of over 15,000 U/l have been reported after MUMs (i.e., Ultra Trail du Mont-Blanc or Western States Endurance Run) (4, 5).

However, the evolution and recovery from muscle damage and inflammatory response over the subsequent days following a MUM has been considerably less investigated (5, 9). Moreover, previous studies did not assess possible factors that may influence this time course of the restoration of muscle damage and inflammatory response. The knowledge of these key factors may be essential for supporting both athletes and coaches in the design of post-competition return-to-training schedules (10). The attention on post-competition recovery processes and its optimization in sport has increased enormously (11). Different early post-exercise interventions such as cooling, massage, compression garments, electrostimulation, stretching, cold water immersion or cryotherapy have been previously assessed (12). However, there is a lack of scientific literature about athletes' physical activity in the days following a main competition and its possible repercussion on recovery (13).

Page 34 of 56

Therefore, the purposes of our study were three-fold. First, we focused on analyzing the recovery timeline of muscle membrane disruption and inflammatory biomarkers following a MUM. Secondly, we wanted to describe the physical activity performed by recreational athletes during the week after the race (recovery week). Lastly, we aimed at exploring whether competition and training background, race performance, age, sex and post-race physical activity were associated to the recovery rate of muscle membrane disruption biomarkers and inflammatory response.

According to previous literature, we hypothesized that: muscle membrane disruption biomarkers may return to baseline values within 7 days post-race, while inflammatory response may still remain significantly increased at this time point (5); athletes may progressively spend greater time at moderate and vigorous intensity levels from the second day after the race onwards; faster runners possibly will recover quicker from muscle membrane disruption and inflammation response than slower runners due to their superior performance level; performing more activities at light and moderate intensity levels during the post-race week will accelerate the recovery from muscle membrane disruption and inflammatory response.

2. Materials and methods

2.1. Experimental design

This research was developed at the Penyagolosa Trails CSP race. The track consisted of 118 km, starting at an altitude of 40 m and finishing at 1280 m above the sea level, with a total positive and negative elevation of 5439 and 4227 m respectively. Four blood samples were collected per runner at different time-points: the day before the race, within 30 min after

Page 35 of 56

crossing the finishing line, 3 days post-race and 7 days post-race. Concomitantly, after crossing 3 4 the finish line, we gave a GENEActiv accelerometer (Activinsights, Ltd., Kimbolton, 6 7 8 Cambridgeshire, United Kingdom) to all finishers, who should wear it for the following seven days after the race in order to objectively quantify their physical activity. Finishers were divided into two groups as faster runners (FR; those with a finishing time below the mean value of our sample, n=15) and slower runners (SR; those with a finishing time above the mean value of our sample, n=19) and post-race physical activity and blood variables were compared between groups. Data about hydration status, executive function and response to orthostatism from this study were already published (14). 2.2. Participants Fifty recreational ultraendurance athletes (44 men and 6 women) were recruited to participate in the study. Selected athletes were required to: have previously completed at least one ultramarathon (>42 km) and be free from cardiac or renal disease and from taking any medication on a regular basis. All subjects were fully informed of the procedure and gave their written informed consent to participate. They were also allowed to withdraw from the study at will A questionnaire was used to collect demographic information as well as training and competition history. All athletes considered the Penyagolosa Trails CSP115 as their main competitive goal of the season. The investigation was conducted according to the Declaration of Helsinki, and it was approved by the Research Ethics Committee of the University Jaume I of Castellon.

2.3. *Procedures*

6 7 8 Blood samples were collected from an antecubital vein by venipuncture using BD Vacutainer PST II tubes. Samples were centrifuged on site at 3500 rpm for ten minutes and kept at 4°C during transport to Vithas Rey Don Jaime Hospital (Castellon), where they were processed using the modular platform Roche / Hitachi clinical chemistry analyzer Cobas c311 (Roche Diagnostics, Penzberg, Germany), following previous studies (15, 16). CK and Lactate dehydrogenase (LDH) were used to assess muscle membrane disruption, as a surrogate for muscle damage. C-reactive protein (CRP) was used as an indicator of acute inflammatory reaction. Biochemical results obtained in the sample collected immediately post-race were adjusted following Dill and Costill method (17), using hematocrit and hemoglobin to determine the magnitude of plasma volume changes after the race in each participant (17, 18).

27 133

The time spent by the participants at each one of the six-relative intensity levels of physical activity was determined by applying the GENEActiv's cut-off points established by Hernando et al. (19, 20). Then, the following composite variables were created for the correlational analysis: LIGHT_3d, total time spent at light intensity level during the first 3 days following the race; MOD_3d, total time spent at moderate intensity level during the first 3 days following the race; VIG_3d, total time spent at the highest three intensity levels of physical activity (vigorous, very vigorous and extremely vigorous) during the first 3 days following the race; LIGHT_7d, total time spent at light intensity level from the 3rd day to the 7th day following the race; MOD_7d, total time spent at moderate intensity level from the 3rd day to the 7th day following the race; VIG 7d, total time spent at the highest three levels of physical activity (vigorous, very vigorous and extremely vigorous) from the 3rd day to the 7th day following the race.

2.4. Statistical analysis

6 7 8 Statistical analyses were carried out using the Statistical Package for the Social Sciences software (IBM SPSS Statistics for Windows, version 22.0, IBM Corp., Armonk, NY). Normal distribution of the variables was verified through the Shapiro-Wilks test, obtaining values of p<0.05 for all variables, except for age, body mass index (BMI), training and competition history. This result motivated the usage of nonparametric tests for the analysis of blood and accelerometry-derived data. Friedman and Wilcoxon tests were conducted to appraise the evolution of CK, LDH and CRP from pre-race to 7 days post-race per runner's group (FR and SR). The same procedure was applied to assess the evolution in the time spent at light, moderate and vigorous intensity levels of physical activity across the recovery week per runner's group. Comparisons of quantitative variables between groups at each specific time-point were A GRO performed using Mann-Whitney U tests.

Additionally, we performed univariate Spearman correlations between each primary outcome (CK, LDH and CRP at all time points) and each independent variable explored (sex, age, BMI, training-related variables, race time and variables related to post-race physical activity). The meaningfulness of the significant outcomes was estimated through Cohen's d effect size: a d < 0.5 was considered small; between 0.5-0.8, moderate; and greater than 0.8, large (21). Likewise, correlations >0.5 were considered strong, 0.3-0.5, moderate and <0.3, small. The significance level was set at p<0.05 and data are presented as means and standard deviations (±SD). Additionally, ranges are shown in those variables that did not follow a normal distribution.

3. Results

Thirty four athletes (29 men and 5 women) successfully completed the race. The finishers/starters ratio for the subjects of the present study (i.e. 68%) was similar to the ratio when all race participants were considered (63.5%). Male athletes' average finish time was 22 h 31 min \pm 3 h 50 min, 168% of winning time (13 h 26 min); while females athletes' average finish time was 22 h 16 min \pm 2 h 55 min, 137% of winning time. Average finish times of FR and SR were 19 h 01 min \pm 2 h 25 min and 25 h 14 min \pm 1 h 46 min respectively. The characteristics of the final sample, as divided into FR and SR, are presented in Table 1. 15 Medile ** Insert Table 1 near here ** The total time spent at each physical activity intensity level during the recovery week following the race by FR and SR is presented in Table 2. Friedman analysis revealed significant differences both in FR and SR in the evolution of light (FR: $\chi^{2(6)}$ =16.095, p=0.013; SR: $\chi^{2(6)}=19.035$, p=0.004), moderate (FR: $\chi^{2(6)}=24.891$, p<0.001; SR: $\chi^{2(6)}=24.891$, p<0.001) and vigorous intensity (FR: $\chi^{2(6)} = 12.973$, p=0.043; SR: $\chi^{2(6)} = 13.167$, p=0.040) physical activity levels during the week post-race. However, no significant inter-group differences were identified. The second day following the race, both runner groups significantly increased the time spent at light intensity (FR: p=0.022, d=0.75; SR: p=0.001, d=0.37) and moderate intensity (FR: p=0.007, d=0.91; SR: p=0.005, d=0.85) compared to the first day post-race, although the magnitude of the observed changes ranged from small to moderate. SR did not evidence any other significant day-to-day change in their physical activity. Meanwhile, FR augmented the time spent at vigorous intensity the 5th day post-race (p=0.046, d=0.61), concomitantly reducing the time spent at moderate intensity (p=0.020, d=0.20), compared to the 4th day post-race.

1 2	195	
3 4	196	** Insert Table 2 near here **
5 6	197	
7 8	198	Friedman analyses revealed significant differences between FR and SR in CK (FR:
9 10	199	$\chi^{2(3)}=30.496$, p<0.001; SR: $\chi^{2(3)}=41.612$, p<0.001), LDH (FR: $\chi^{2(3)}=29.630$, p<0.001; SR:
11 12 12	200	$\chi^{2(3)}$ =48.867, p<0.001) and CRP (FR: $\chi^{2(3)}$ =30.209, p<0.001; SR: $\chi^{2(3)}$ =44.333, p<0.001) during
13 14 15	201	the week post-race. CK remained significantly and largely elevated compared to baseline values
16 17	202	at 3 days post-race (FR: p=0.002, d=1.26; SR: p<0.001, d=1.07 respectively), but not at 7 days
18 19	203	post-race (Figure 1A). Moreover, CK concentration was largely higher in FR compared to SR
20 21	204	at 3 days post-race (p<0.012, $d=1.17$). LDH kept significantly and moderately to largely
22 23	205	increased at 7 days post-race (FR: p=0.005, d=1.08; SR. p=0.020, d=0.63 respectively) (Figure
24 25	206	1B). In addition, LDH values were largely higher in FR compared to SR at 3 and 7 days post-
26 27 28	207	race (p=0.005, d=1.01; p<0.015, d=1.05 respectively) CRP remained significantly and largely
29 30	208	increased 7 days post-race (FR: p=0.001, $d=2.09$, SR: p<0.001, $d=1.01$ respectively) (Figure
31 32	209	1C). No significant differences were observed in CRP at any time point between FR and SR.
33 34	210	
35 36	211	** Insert Figure 1 near here **
37 38 39	212	
40 41	213	The results from Spearman correlation analyses are presented in Table 3. A negative correlation
42 43	214	was observed between the time performing light physical activities and CRP at 3 days post-race
44 45	215	(r_s =-0.40, p=0.025). No other significant association was found between the time spent at each
46 47	216	intensity level of physical activity and biomarkers concentrations (CK, LDH and CRP) at 3 and
48 49	217	7 days post-race. No significant relationships were identified between biomarkers levels and
50 51	218	training-related data, age and body mass index (BMI). Conversely, moderate to large significant
52 53 54 55	219	associations were found between race time and muscle damage biomarkers at 3 days post-race

Page 40 of 56

(CK: r_s=-0.41, p=0.017; LDH: r_s=-0.52, p=0.002) and at 7 days post-race (CK: r_s=-0.36,

1 2	220	(CK: r_s =-0.41, p=0.017; LDH: r_s =-0.52, p=0.002) and at 7 days post-race (CK: r_s =-0.36,
- 3 4	221	p=0.039; LDH: r_s =-0.46, p=0.007). On the other hand, female sex was moderately correlated
5 6 7	222	with lower CK values at 7 days post-race ($r_s=0.35$; $p=0.048$).
7 8	223	$\left(\right)$
9 10 11	224	** Insert Table 3 near here **
12 13	225	
14 15	226	4. Discussion
16 17	227	
18 19	228	The present study was aimed at exploring whether the evolution of muscle damage and
20 21	229	inflammatory response biomarkers during the week following a MUM is related with race
22 23 24	230	performance and post-race physical activity. Contrary to our expectations, the results showed
25 26	231	that muscle damage recovery is quicker in SR compared to FR, while a lack of relationship was
27 28	232	found between post-race physical activity and the recovery rate of muscle damage and
29 30	233	inflammatory response.
31 32	234	
33 34 25	235	CK and LDH returned to baseline values within 5 and 9 days following a 166km MUM,
35 36 37	236	whereas CRP remained higher at 9 days post-race (5). Three days after a 111-km MUM, CK,
38 39	237	LDH and CRP remained elevated compared to baseline values (9). Our results showed that CK
40 41	238	levels returned to baseline between 3 and 7 days after the race, while LDH and CRP kept
42 43	239	significantly increased compared to pre-race values 7 days post-race. Following a road
44 45	240	marathon, CK and LDH were reported to return to pre-race values 6 and 8 days after the race,
46 47	241	respectively; while CRP remained above baseline values the 8 th day post-race (15). Following
48 49	242	an Ironman triathlon, CRP remained significantly elevated up to 19 days after the competition
50 51 52	243	(22). Hence, in light of previous findings and ours, it seems that inflammatory response takes
53 54		
55		

longer to normalize following ultraendurance competitions, while muscle damage biomarkers return earlier to pre-race values.

3 4

6 7 8 On the other hand, a recent scoping review, focused on discussing the relevance of physical activities performed by athletes on their recovery, highlighted the necessity of performing more descriptive researches in different athlete populations (13). The results of the present study showed a very heterogeneous pattern of physical activity (as evidenced by the large variability in the time spent at each intensity level) in recreational runners following a MUM Nevertheless, we noted a significant and large increase in moderate physical activity intensity from the first to the second day after the race, while from the second day post-race to the seven day post-race the distribution of daily physical activity intensities remained virtually unchanged. Total daily time at vigorous intensity was on average below 10 min unfil the 4th day post-race and between 10-20 min between the 5th and the 7th day post-race. Therefore, although some runners displayed outlying post-race physical activities in terms of effort intensity, the majority of our runners barely exercised at a vigorous intensity during the week following the race. Moreover, FR and SR showed similar post-race physical activities.

Post-race CK level has been described as the main determinant of the recovery rate in perceived muscle soreness and a 400 m run at maximal speed following a 161-km MUM (23). The authors from this study concluded that the most effective strategies to enhance post-MUM recovery would be the ones focused on attenuating the extent of muscle damage. We hypothesized that more active runners during the week after the race may show an accelerated recovery of muscle damage and inflammatory biomarkers. Our results did not corroborate this assumption. However, they are in accordance with a recent study where no differences were identified regarding muscle damage and inflammatory response restoration during the week after running

a road marathon between those participants who performed elliptical training, running orcomplete resting (24).

On the other hand, FR displayed a more attenuated muscle damage recovery than SR. In fact, finishing time emerged as a more influencing factor than post-race physical activity regarding the recovery rate of muscle damage. Interestingly, a previous study also showed that LDH concentrations from 24 h to 192 h following a road marathon was inversely correlated with finishing time, while the acute inflammatory response was positively correlated with finishing time (15). Our results also showed that post-race CRP was moderately higher in SR compared to FR, although the difference was not statistically significant (p=0.117, d=0.65; Figure 1C). Finally, female sex relationship with lower CK values at 7 days post-race coincides with a previous study performed on Ironman triathletes (25). Notwithstanding, given the low number of women in our sample (n=5), this result should be obviously interpreted with caution. In fact, a recent review concluded that it remained unclear whether recovery from exercise-induced muscle damage differs between males and females (10).

There are some limitations in our study that should be acknowledged. Firstly, we assume that serum CK and LDH assess muscle membrane disruption and do not necessarily correlate well with muscle structural damage. Secondly, the addition of biomarkers of ion metabolism disorders and damage caused by energy loss would have given us a broader view of the acute physiological side effects and the recovery timeline following the race. Thirdly, we acknowledge that CRP is a non-specific indicator of inflammation, so it does not accurately reflect the inflammation of the muscle. Lastly, we assume that finishing time does not equate to physical fitness, but unfortunately we were unable to perform a cardiopulmonary exercise test at baseline.

5. Conclusions

6 7 8 In light of these findings, an appropriate recovery period after MUMs seems prudent and particularly important among faster runners, given that they showed higher levels of muscle damage at 3 and 7 days post-race. Moreover, race time was inversely correlated with muscle damage biomarkers at 3 days and 7 days post-race. Accordingly, exercise that could induce greater muscle damage should be avoided at least during the first 3 days following the competition. At the same time, the augmented inflammatory activity during the week post-race should not be overlooked. Notwithstanding, given that CRP is a non-specific indicator of inflammation, further studies are required to clarify whether this could affect immune competence, performance and fatigue. Neither competition and training background nor age displayed a relationship with muscle damage and inflammatory response restoration following the race. Lastly, our results evidenced a very heterogeneous pattern of physical activity in recreational runners following a MUM, so accelerometry is proposed as a suitable tool to monitor and consequently adjust athletes' physical activities following ultraendurance events.

1 2	309	References
2 3 4	310	
5 6	311	1. Hoffman MD, Ong JC, Wang G. Historical analysis of participation in 161 km
7 8	312	ultramarathons in North America. Int J Hist Sport 2010;27(11):1877-91.
9 10	313	2. Scheer V, Basset P, Giovanelli N, Vernillo G, Millet GP, Costa RJS. Defining Off-road
11 12	314	Running: A Position Statement from the Ultra Sports Science Foundation. Int J Sports Med
13 14 15	315	2020 Feb 14.
16 17	316	3. Knechtle B, Nikolaidis PT. Physiology and Pathophysiology in Ultra-Marathon Running.
18 19	317	Front Physiol 2018;9:634.
20 21	318	4. Hoffman, M. D., Ingwerson, J. L., Rogers, I. R., Hew Butler, T., & Stuempfle, K. J. (2012).
22 23	319	Increasing creatine kinase concentrations at the 161-km Western States Endurance Run.
24 25	320	Wilderness Environ Med, 23(1), 56-60. doi: 10.1016/j.wem.2011.11.001
26 27	321	5. Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, et al. Neuromuscular
28 29 30	322	consequences of an extreme mountain ultra marathon. PLoS One 2011;6(2):e17059.
30 31 32	323	6. Giandolini, M., Horvais, N., Rossi, J., Millet, G. Y., Morin, J. B., & Samozino, P. (2016).
33 34	324	Acute and delayed peripheral and central neuromuscular alterations induced by a short and
35 36	325	intense downhill trail run. Scand J Med Sci Sports, 26(11), 1321-1333. doi: 10.1111/sms.12583
37 38	326	7. Vernillo, G., Giandolini, M., Edwards, W. B., Morin, J. B., Samozino, P., Horvais, N., &
39 40	327	Millet, G. Y. (2017). Biomechanics and Physiology of Uphill and Downhill Running. Sports
41 42	328	Med, 47(4), 615-629. doi: 10.1007/s40279-016-0605-y
43 44 45	329	8. Brown, F., Gissane, C., Howatson, G., van Someren, K., Pedlar, C., & Hill, J. (2017).
45 46 47	330	Compression Garments and Recovery from Exercise: A Meta-Analysis. Sports Med, 47(11),
48 49 50 51 52 53	331	2245-2267. doi: 10.1007/s40279-017-0728-9
54 55		

1 2	332	9. Rubio-Arias JA, Avila-Gandia V, Lopez-Roman FJ, Soto-Mendez F, Alcaraz PE, Ramos-
2 3 4	333	Campo DJ. Muscle damage and inflammation biomarkers after two ultra-endurance mountain
5 6	334	races of different distances: 54km vs 111km. Physiol Behav 2019 Jun 1;205:51-7.
7 8	335	10. Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation
9 10	336	during recovery from exercise. J Appl Physiol (1985) 2017 Mar 1;122(3):559-70.
11 12 13	337	11. Richard NA, Koehle MS. Optimizing recovery to support multi-evening cycling
13 14 15	338	competition performance. Eur J Sport Sci 2019 Jul;19(6):811-23.
16 17	339	12. Dupuy O, Douzi W, Theurot D, Bosquet L, Dugue B. An Evidence-Based Approach for
18 19	340	Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness,
20 21	341	Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front Physiol
22 23	342	2018;9:403.
24 25 26	343	13. Izzicupo P, Di Baldassarre A, Ghinassi B, Reichert FF, Kokubun E, Nakamura FY. Can
26 27 28	344	Off-Training Physical Behaviors Influence Recovery in Athletes? A Scoping Review. Front
29 30	345	Physiol 2019;10:448.
31 32 33 34	346	14. Martinez-Navarro I, Chiva-Bartoli O, Hernando B, Collado E, Porcar V, Hernando C.
	347	Hydration Status, Executive Function, and Response to Orthostatism After a 118-km Mountain
35 36	348	Race: Are They Interrelated? J Strength Cond Res 2018 Feb;32(2):441-9.
37 38 39	349	15. Bernat-Adell MD, Collado-Boira EJ, Moles-Julio P, Panizo-Gonzalez N, Martinez-Navarro
40 41	350	I, Hernando-Fuster B, et al. Recovery of Inflammation, Cardiac, and Muscle Damage
42 43	351	Biomarkers After Running a Marathon. J Strength Cond Res 2019 Apr 29.
44 45	352	16. Panizo Gonzalez N, Reque Santivanez JE, Hernando Fuster B, Collado Boira EJ, Martinez-
46 47	353	Navarro I, Chiva Bartoll O, et al. Quick Recovery of Renal Alterations and Inflammatory
48 49	354	Activation after a Marathon. Kidney diseases 2019 Oct;5(4):259-65.
50 51	355	17. Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and
52 53 54	356	red cells in dehydration. J Appl Physiol 1974 Aug;37(2):247-8.
54 55		

Page 46 of 56

357 18. Alis R, Sanchis-Gomar F, Primo-Carrau C, Lozano-Calve S, Dipalo M, Aloe R, et al.
358 Hemoconcentration induced by exercise: Revisiting the Dill and Costill equation. Scand J Med
359 Sci Sports 2015 Dec;25(6):e630-7.

'360 19. Hernando C, Hernando C, Collado EJ, Panizo N, Martinez-Navarro I, Hernando B.
'361 Establishing cut-points for physical activity classification using triaxial accelerometer in
'362 middle-aged recreational marathoners. PLoS One 2018;13(8):e0202815.

- 20. Hernando C, Hernando C, Martinez-Navarro I, Collado-Boira E, Panizo N, Hernando B.
 Estimation of energy consumed by middle-aged recreational maratheners during a marathon
 365 using accelerometry-based devices. Sci Rep 2020 Jan 30;10(1):1523.
- 366 21. Thomas J, Nelson J, Silverman S. Research Methods in Physical Activity. Champaign:
 367 Human Kinetics; 2005.
- 368 22. Neubauer O, Konig D, Wagner KH. Recovery after an Ironnan triathlon: sustained
 inflammatory responses and muscular stress. Eur J Appl Physiol 2008 Oct;104(3):417-26.
- 23. Hoffman MD, Badowski N, Chin J, Stuempfle KJ, Parise CA. Determinants of recovery
 371 from a 161-km ultramarathon. J Sports Sci 2017 Apr;35(7):669-77.

372 24. Martinez-Navarro I, Montoya Vieco A, Hernando C, Hernando B, Panizo N, Collado C.
373 The week after running a marathon: effects of running vs elliptical training vs resting on
374 neuromuscular performance and muscle damage recovery. European Journal of Sport Science
375 2020 Nov 28.

42 376 25. Danielsson T, Carlsson J, Schreyer H, Ahnesjo J, Ten Siethoff L, Ragnarsson T, et al. Blood
43 377 biomarkers in male and female participants after an Ironman-distance triathlon. PLoS One
46 378 2017;12(6):e0179324.

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

3 4

Funding

Vithas Hospitals group and Catedra Endavant Villarreal CF de l'Esport. The funders had no involvement in the study design, data collection, analysis and interpretation, writing of the manuscript and decision to submit the paper for publication.

Authors' contributions

All authors contributed equally to study design and data acquisition. Author A and C analyzed the data. Author A wrote the manuscript. Author B and D and E revised it critically. All authors have read and approved the final version of the manuscript, and agree with the order of A Shark presentation of the authors

Acknowledgements

Current research could be carried out thanks to the collaboration of Vithas Hospitals group, Penyagolosa Trails organization and Catedra Endavant Villarreal CF de l'Esport. Authors are also grateful to all the staff involved in the organization of the race and all runners and volunteers participating in this study.

	Whole sample	Faster Runners	Slower Runner	Faster	vs Slower
	(n = 34)	(n = 15; 3 women)	(n = 19; 2 women)	p-value	Cohen's l
Age (years)	39 ± 7	38 ± 6	41±9	0.157	0.41
BMI (kg/m ²)	24 ± 2.4	22.9 ± 1.8	24.8±2.6	0.014	0.86
Number of races >100 km	3 ± 3	2 ± 3	4 ± 4	0.358	0.39
Weekly training days	5 ± 1	5 ± 1	4 ± 1	0.046	0.77
Weekly running volume (km)	66 ± 26	74±19	61 ± 30	0.174	0.51
Weekly positive elevation (m)	1758 ± 844	2079 ± 980	(1508 ± 644)	0.071	0.73
Strength training (%)	44.1%	57.1%	36.8%	0.247	-
Abbreviations: BMI, Body Mass Inde			recipants who performed a	u ieasi one we	ckiy suchgui-tra

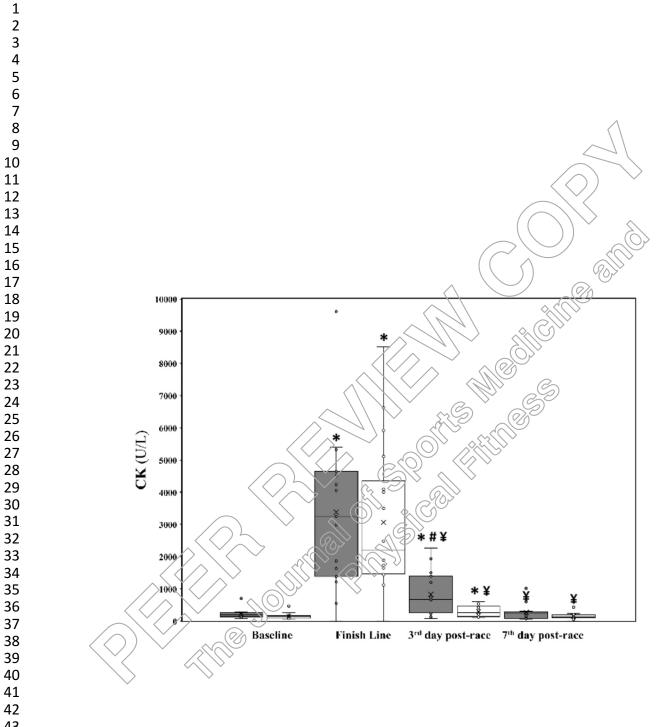
Page 49 of 56

		XX 71 1 1				
		Whole sample	Faster Runners	Slower Runners	Faster vs	Slower
		(n=34)	(n = 15)	(n = 19)	p-value	Cohen's D
	1 st day post-race	165 ± 158 (45 – 972)	150 ± 50 (92 - 256)	177 ± 211 (45 972)	0.356	0.19
Light Intensity	2 nd day post-race	$227 \pm 166 \ (81 - 1029)$	196 ± 74 (104 – 344) *	253 ± 214 (81 - 1029) **	0.518	0.39
Physical Activity	3 rd day post-race	247 ± 167 (62 – 952)	230 ± 124 (62 - 445)	250 ± 198 (71 – 952)	0.953	0.19
	4 th day post-race	$262 \pm 163 \ (84 - 897)$	264 ± 123 (84 - 478) *	260 ± 194 (97 - 897)	0.597	0.02
(min)	5 th day post-race	$239 \pm 164 \ (63 - 911)$	245 ± 114 (116 - 440)	233 = 199 (63 - 911)	0.316	0.08
	6 th day post-race	251 ± 147 (67 - 868)	252 ± 100 (87 418)	251 ± 180 (67 - 868)	0.681	0.01
	7 th day post-race	225 ± 152 (3 - 883)	223 ± 98 (92 - 486)	227 ± 188 (3 - 883)	0.625	0.02
	1st day post-race	12 ± 7 (1 - 25)	12=6(4-24)	11 ± 7 (1 – 25)	0.570	0.16
Moderate Intensity	2nd day post-race	48-± 60 (1-232)	50 ± 60 (3 = 232) **	47 ± 61 (1 – 232) **	0.830	0.05
Physical Activity	3rd day post-race	46 ± 45 (0 - 156)	51 ± 50 (0 - 156)	42 ± 41 (1 – 156)	0.739	0.18
· ·	4th day post-race	54 ± 43 (3 - 180)	60 ± 48 (3 – 180)	49 ± 39 (7 – 138)	0.468	0.26
(min)	5th day post-race	46 ± 42 (1) 156)	S1 ± 49 (5 − 156) *	42 ± 36 (3 – 144)	0.984	0.20
	6th day post-race	64.±54 (4 − 190)	$68 \pm 59 \; (9 - 190)$	$60 \pm 52 \; (4 - 178)$	0.830	0.15
	7th day post-race	69 ± 75 (0 - 301)	67 ± 77 (1 – 301)	71 ± 76 (0 – 301)	0.953	0.06
_	1st day post-race	$2 \pm 7 (0 - 41)$	$1 \pm 2 (0 - 9)$	$2 \pm 10 (0 - 41)$	0.984	0.27

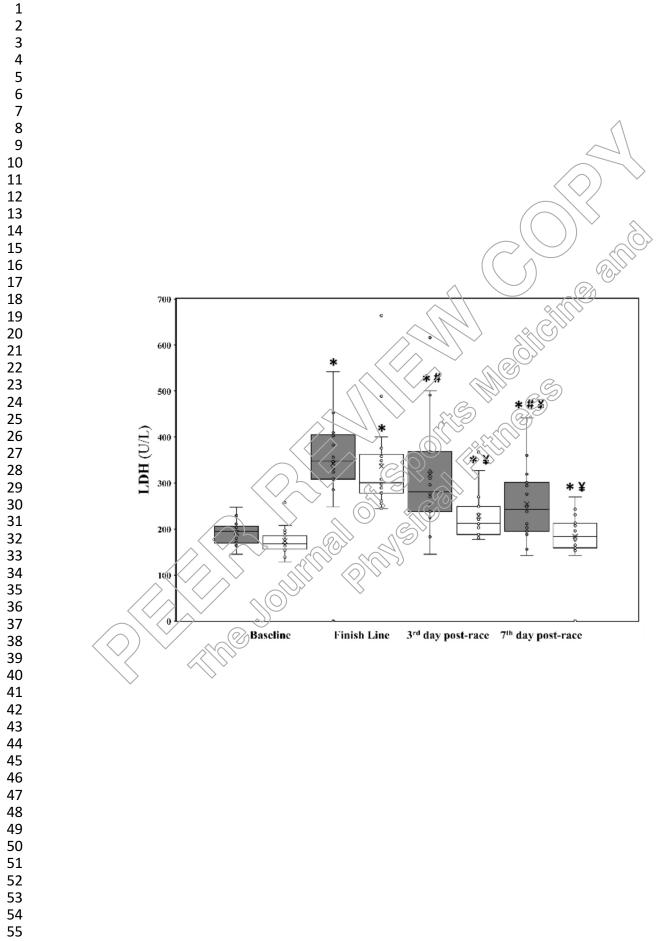
Page 50 of 56

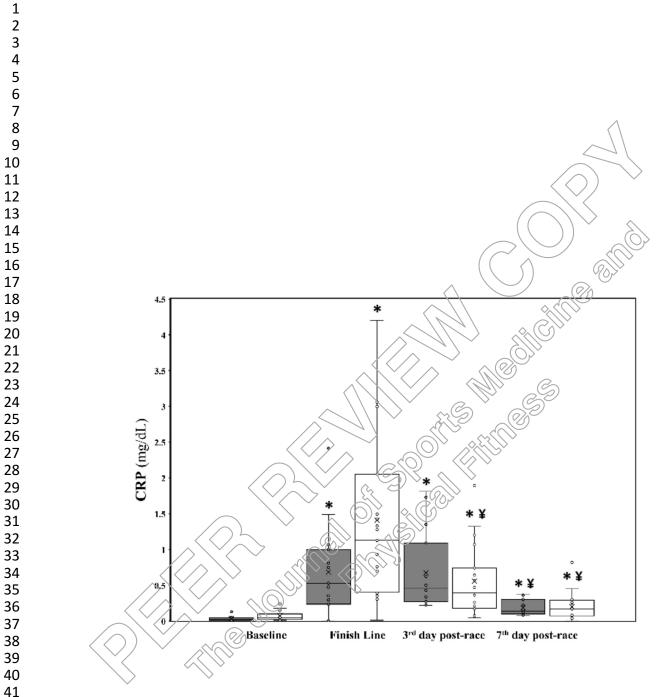
1 2 3 4 5 6 7 8 9 10 11	Vigorous Intensity Physical Activity (min)	2nd day post-race 3rd day post-race 4th day post-race 5th day post-race 6th day post-race 7th day post-race	$3 \pm 8 (0 - 32)$ $4 \pm 10 (0 - 40)$ $6 \pm 13 (0 - 44)$ $13 \pm 24 (0 - 81)$ $12 \pm 24 (0 - 113)$ $19 \pm 40 (0 - 153)$	$2 \pm 6 (0 - 24)$ $3 \pm 7 (0 - 22)$ $5 \pm 12 (0 - 36)$ $18 \pm 30 (0 - 81) *$ $3 \pm 7 (0 - 24)$ $25 \pm 42 (0 - 153)$	$3 \pm 9 (0 - 32)$ $5 \pm 12 (0 - 40)$ $7 \pm 15 (0 - 44)$ $8 \pm 18 (0 - 62)$ $19 \pm 30 (0 - 113)$ $15 \pm 38 (0 - 153)$	0.830 0.953 0.653 0.518 0.138 0.493	0.13 0.25 0.19 0.41 0.77 0.26
	* Significantly differ	rent from the preceding	g day (p<0.05); ** Sign	ificantly different from th	15 ± 38 (0 – 153)	0.493	0.26

Page 51 of 56


		3 rd day post-race		$\langle \bigcirc \rangle$	7 th day post-race	
	СК	LDH	CRP	CK	LDH	CRP
Sex	-0.165 / 0.351	0.072 / 0.686	0.220 / 0.211	-0.346/0.048 *	0.009 / 0.961	0.049 / 0.78
Age	0.086 / 0.630	0.071 / 0.689	0.098 / 0.582	-0.057 / 0.753	0.012 / 0.949	0.141 / 0.45
Race time	-0.408 / 0.017 *	-0.519 / 0.002 **	-0.314 \ 0.070	-0.361 / 0.039 *	-0.464 / 0.007 **	-0.191 / 0.28
BMI	-0.124 / 0.492	-0.297 / 0.093	-0.071 / 0.696	-0.123/ 0.502	-0.270 / 0.135	0.090 / 0.62
Number of races >100 km	0.129 / 0.473	0.156 / 0.384	0.059/0.743	-0.052/0.779	0.171 / 0.349	-0.063 / 0.73
Weekly training days	-0.046 / 0.800	0.090 / 0.616	0.182 / 0.311	-0.164 0.571	-0.041 / 0.826	0.064 / 0.72
Weekly running volume (km)	0.057 / 0.754	0.128/0.477	-0.053 / 0.770	0.052 / 0.779	0.011 / 0.952	-0.067 / 0.71
Weekly positive elevation	0.128 / 0.487	0.214/0.240	0.173 0.344	0.143 / 0.451	0.235 / 0.203	0.193 / 0.29
Strength training	0.096 / 0.596	0.118/0.512	-0.297 / 0.093	0.302 / 0.093	0.027 / 0.883	-0.204 / 0.26
LIGHT_3d	-0.032 / 0.864	0.227 / 0.220	0.401 \ 0.025 *	-	-	-
MOD_3d	-0.051/0.785	0.203/0273	0.280 / 0.128	-	-	-
VIG_3d	0.057 0.762	0.030 0.873	0.016 / 0.931	-	-	-
LIGHT_7d	$\langle \langle \rangle \rangle$	<u> </u>	-	0.174 / 0.357	0.204 / 0.279	0.228 / 0.22
MOD_7d	$)) \bigvee_{\sim} ($	<u> </u>	-	0.154 / 0.417	0.089 / 0.639	0.091 / 0.63
VIG_7d	<u>_ ~~</u> **	-	_	0.232 / 0.217	0.103 / 0.588	0.141 / 0.45

- 36 37 38


Page 52 of 56


1 40 3 3	Abbreviations: CK, Creatine Kinasa; LDH, Lactate dehydrogenase; CRP, C-reactive protein; LIGHT_3d, total time spent at light intensity level
40 <u>6</u> 5	during the first 3 days following the race; MOD_3d, total time spent at moderate intensity level during the first 3 days following the race; VIG_3d,
405	total time spent at the highest three intensity levels of physical activity (vigorous, very vigorous and extremely vigorous) during the first 3 days
8 40 8	following the race; LIGHT_7d, total time spent at light intensity level from the 3 rd day to the 7 th day following the race; MOD_7d, total time spent
10 4⊉⊉ 12	at moderate intensity level from the 3 rd day to the 7 th day following the race; VIG_7d, total time spent at the highest three levels of physical activity
12 4 19 14	(vigorous, very vigorous and extremely vigorous) from the 3^{rd} day to the 7 th day following the race * p<0.05 ** p<0.01
15 16	
17	
18	
19 20	
21	
22 23	
23	
25	
26 27	
28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
50	

1	411	Figure legend
2 3	412	
4		
6	413	Figure 1. CK (panel A), LDH (panel B) and CRP (panel C) evolution from pre-race to 7
3 4 5 6 7 8 9	414	days following the MUM in FR (grey boxes) and SR (white boxes)
9 10 11	415	
12	416	Abbreviations: CK, Creatine Kinasa; LDH, Lactate dehydrogenase; CRP, C-reactive protein;
13 14 15 16 17	417	FR, Faster runner; SR, Slower runners. * Significantly different from baseline (p<0.05);
	418	# Significantly different from slower runners (p<0.05); ¥ Significantly different from the
17 18 19 20 21 22 32 42 52 62 7 82 93 32 33 43 53 67 83 94 142 43 445 467 89 51 52 53 455 53 5455	419	preceding time point (p<0.05)

- 52 53 54

- 22 23 25 26 27 29 30 31 33 35 36 37 38 43 44 45 46 47
- 49 50 51 52 53 54 55